Vibrio dynamics in zero-exchange, bioflocdominated production systems for the Pacific white shrimp, Litopenaeus vannamei

David Prangnell¹, Leandro Castro¹, Susan Laramore², Jeffrey Turner³, Paul Zimba³, Thomas Zeigler⁴, Craig Browdy⁴, Darrin Honious⁵, Bob Advent⁶, and Tzachi Samocha¹

¹Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas

²Harbor Branch Oceanographic Institute-FAU, Fort Pierce, Florida

³Texas A&M University-Corpus Christi, Corpus Christi, Texas

⁴Zeigler Bros., Gardners, Pennsylvania

⁵YSI, Yellow Springs, Ohio

⁶a³ All Aqua Aeration, Orlando, Florida

Aquaculture America 2015 February 19-22, 2015 New Orleans, Louisiana

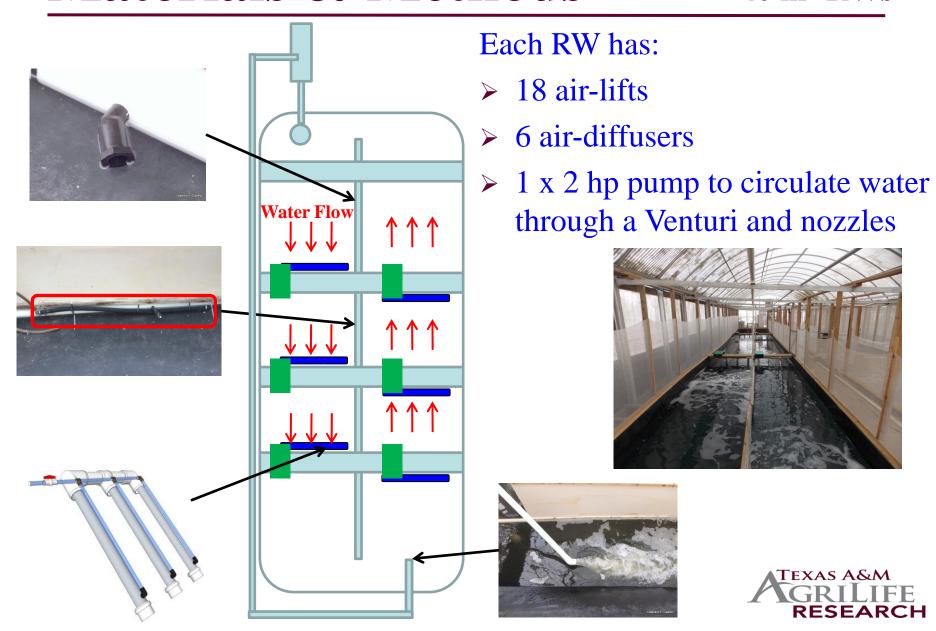
Introduction

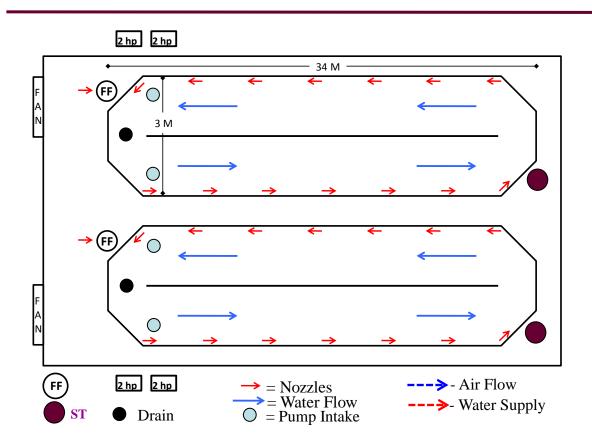
- As super-intensive biofloc-dominated shrimp production systems have developed, three main limiting factors have emerged: waste (solids) management, ionic changes, and bacterial infections
- ➤ Vibrio infections are the most common problems in intensive shrimp culture, including bioflocdominated systems, and these outbreaks can substantially reduce shrimp production
- ➤ Simple tools to limit and monitor *Vibrio* infections in shrimp production systems are needed

Objectives

- ➤ To monitor changes in *Vibrio* populations throughout nursery and grow-out trials in two indoor super-intensive biofloc-dominated zero-exchange shrimp production systems
- Establish protocols for *Vibrio* monitoring and potential treatment options in these systems

The presence of *Vibrio* was monitored in two biofloc systems producing *Litopenaeus vannamei* through nursery and grow-out phases in greenhouse-enclosed, EPDM-lined raceways:


Six 40 m³ RWs


Two 100 m³ RWs

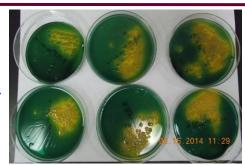
100 m³ RWs

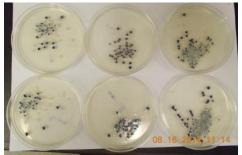
- ➤ Two 2 hp pumps
- ➤ 14 a³ injectors
- > One ST & one FF

- ➤ RWs were filled with disinfected natural seawater and 10% aged seawater (*KI Nitrifier*TM / 3 wk)
- > RWs were operated with no water exchange
- ➤ RWs stocked with Fast-Growth/Taura Resistant PL₅₋₁₀ (0.94 mg)- 40 m³: 675 PL/m³; 100 m³: 540 PL/m³ & reared for 62 days
- ➤ KI-NitrifierTM & white sugar were used to enhance nitrifying & heterotrophic bacterial activities to control nitrogen species
- Feed was distributed 24/7 using belt feeders (EZ-Artemia/Dry Zeigler Bros.)

- ➤ RWs were filled with a mixture of biofloc-rich water (87.5%) used in the nursery trial, and natural seawater (12.5%)
- > RWs stocked with juveniles from the nursery trial-
 - \rightarrow 40 m³: 457/m³ (5.30 g) reared for 48 days
 - $ightharpoonup 100 \text{ m}^3$: 458/m³ (6.45 g) reared for 38 days
- ➤ Shrimp were fed either 35% (HI-35) (3 x 40 m³ RWs) or 40% protein (EXP) (3 x 40 m³, 100 m³ RWs) feeds (*Zeigler Bros.*)

Water Quality

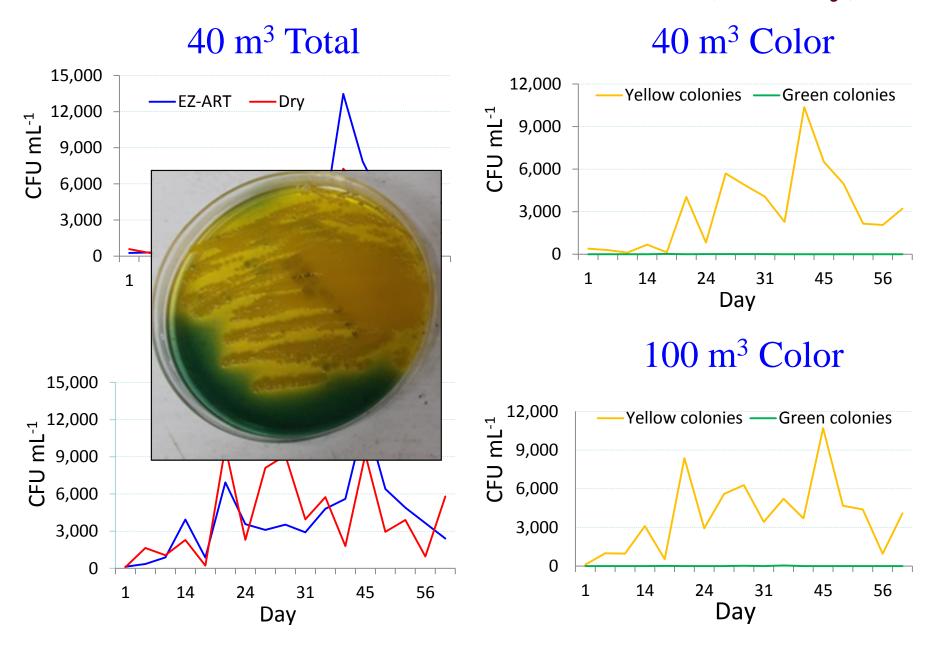

➤ Each RW had an optical DO monitoring probe & YSI 5500D monitoring system (YSI Inc., Yellow Springs, OH)



- ➤ Alkalinity adjusted to 160 mg L⁻¹ (as CaCO₃) using sodium bicarbonate as required
- > pH adjusted to >7 using NaOH during grow-out
- ➤ O₂ supplemented in 40 m³ RWs grow-out
- ➤ Ecopro® (*EcoMicrobials, Miami, FL*) every 1-3 d
- FFs & STs used to control solids, targeting TSS of 200-300 mg L⁻¹ & SS of 10-14 mL L⁻¹

Vibrio & Algae

- ➤ Vibrio in culture medium monitored 2/wk on TCBS and late in grow-out on RambaCHROM
- Vibrio in hemolymph of moribund shrimp cultured on TCBS and RambaCHROM at grow-out harvest
- ➤ Algal pigments in biofloc measured 1/wk


	40 m^3		100 m ³	
	Mean	Range	Mean	Range
Temperature (°C)	26.6	20.8 - 30.6	26.6	22.2 - 30.2
DO (mg L ⁻¹)	6.5	4.4 - 8.5	6.7	4.4 - 8.5
рН	8.2	7.8 - 8.5	8.1	7.6 - 8.5
Salinity (ppt)	30.4	29.6 - 31.2	30.4	29.7 - 31.1
TAN (mg L ⁻¹)	0.94	0 - 4.95	0.78	0 - 2.72
NO ₂ -N (mg L ⁻¹)	2.29	0 - 10.93	1.84	0 - 5.46

Shrimp Performance (Nursery)

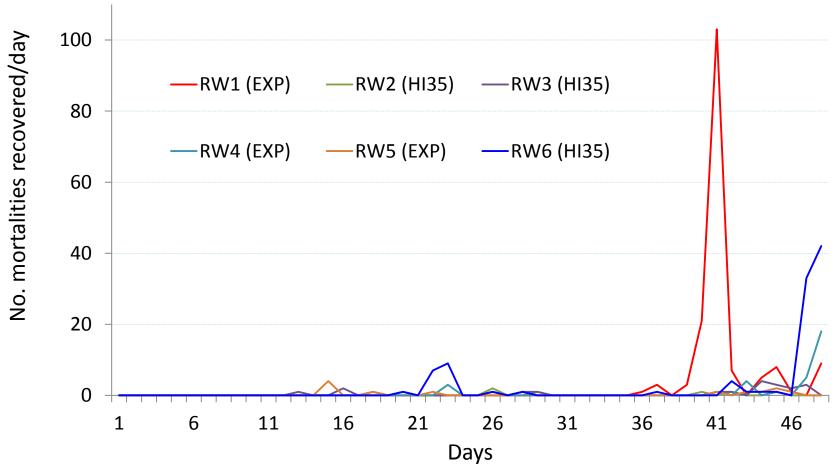
	40 m^3	100 m^3
Final Weight (g)	5.57±0.55	6.46 ± 0.04
Growth (g/wk)	0.60 ± 0.06	0.73 ± 0.01
Total Biomass (kg)	126.4 ± 7.28	335.6 ± 10.10
Yield (kg/m ³)	3.16 ± 0.18	3.36 ± 0.10
FCR	0.89 ± 0.06	0.81 ± 0.00
Survival (%)	84.86±11.37	96.20 ± 2.26

Vibrio colonies in the culture medium (nursery)

➤ At the end of the nursery phase, survival was high (70.6 - 97.9%) and FCR was low (0.81 - 0.89).

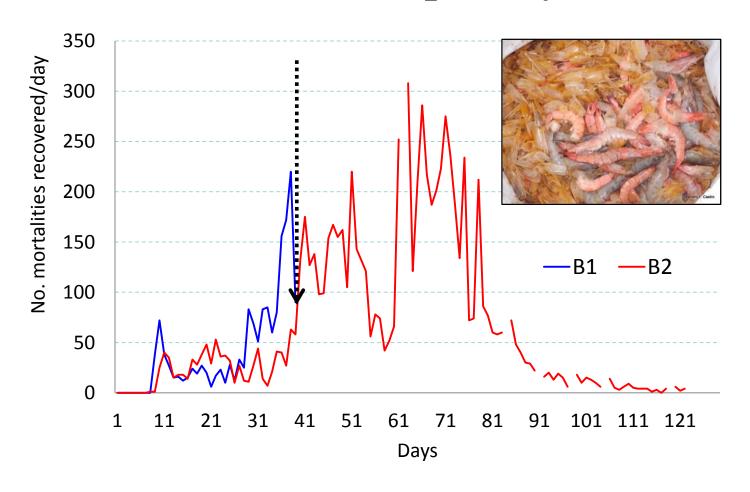
- ➤ Green colony forming units (GCFU) *Vibrio* remained below 100 CFU mL⁻¹ and <21.5% of the total concentration in 40 m³ RWs and were only observed on 14.7% of plates.
- ➤ GCFU *Vibrio* remained below 100 CFU mL⁻¹ and <9.1% of the total concentration in 100 m³ RWs and were only observed on 12.1% of plates.
- ➤ No evidence of Vibriosis or chitinoclastic bacterial infections in any RW.

Grow-out Water Quality


	40 m^3		100 m ³	
	Mean	Range	Mean	Range
Temperature (°C)	29.9	27.8 - 31.8	30.3	28.8 - 31.6
DO (mg L ⁻¹)	5.4	3.5 - 6.9	6.1	4.6 - 7.2
рН	7.5	6.8 - 8.0	7.6	6.7 - 7.9
Salinity (ppt)	30.3	29.6 - 31.2	30.4	29.3 - 31.0
TAN (mg L ⁻¹)	1.38	0.21 - 6.00	1.2	0.27 - 2.85
NO ₂ -N (mg L ⁻¹)	0.24	0 - 2.25	0.18	0 - 0.58
NO ₃ -N (mg L ⁻¹)	125	46 - 232	112	62 - 187
PO ₄ (mg L ⁻¹)	29	14 - 57	32	22 - 57

Shrimp Performance (Grow-out)

	40 m^3	100 m^3
Final Weight (g)	20.64 ± 1.38	18.69 ± 0.45
Growth (g/wk)	2.21 ± 0.18	2.25 ± 0.08
Total Biomass (kg)	292.0 ± 21.0	646.7 ± 63.6
Yield (kg/m ³)	7.30 ± 0.53	6.47 ± 0.64
FCR	1.65 ± 0.18	1.79 ± 0.30
Survival (%)	77.72 ± 0.08	75.54 ± 5.61



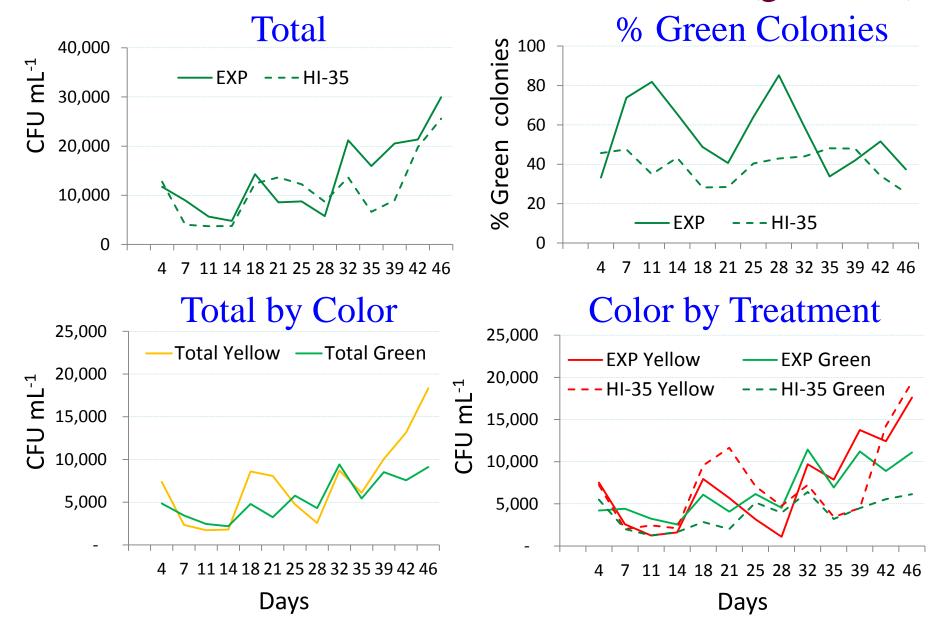
Mortalities recovered per day (40 m³)

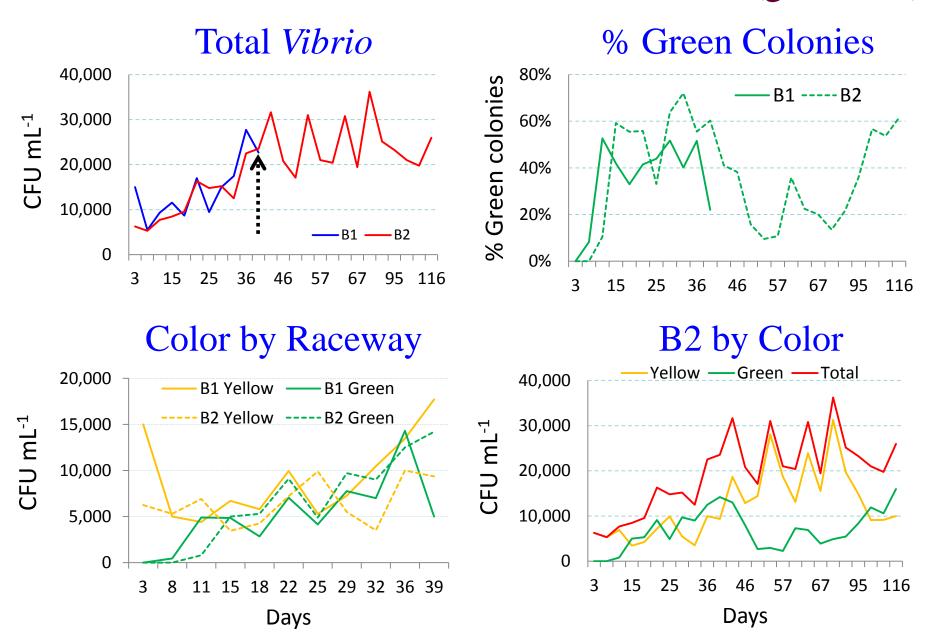
Mortalities recovered per day (100 m³)



Results Grow-out

- ➤ GCFU *Vibrio* were much more abundant than in the nursery phase
- ➤ Vibriosis-related mortality observed after 1 week in 100 m³ but not observed until later in the trial in 40 m³ RWs
- ➤ RambaCHROM plating & preliminary API: *V. parahaemolyticus*, *V. vulnificus* & *V. alginolyticus* in culture water (1:3.1:6.4), & moribund shrimp (>1:50:50)
- ➤ 16S rRNA sequencing: *V. parahaemolyticus*, *V. vulnificus*, *V. alginolyticus*, *V. harveyi* & *V. mytili* in moribund shrimp





Vibrio colonies in the 40 m³ culture medium (grow-out)

Vibrio colonies in the 100 m³ culture medium (grow-out)

Summary of *Vibrio* counts on TCBS (grow-out)

	40 m ³		100 m ³	
Vibrio col. (CFU mL ⁻¹)	Mean	Range	Mean	Range
Total (x 1,000)	9.63	2.20-23.30	18.05	5.30-31.65
Yellow (x 1,000)	5.13	0.70-20.40	12.19	3.45-28.05
Green (x 1,000)	4.50	0.30-15.90	5.86	0.00-14.30
% Green	48.06	3-87	38.74	0-72

Over equivalent time period (38 d of 100 m³ & 1st 38 d of 40 m³ trial)

Mean algal content in biofloc

Pigment (ng/μL)	From	$40 \mathrm{m}^3$	100 m ³
C2		6.65	8.08
Diadinoxanthin	Diatoms	1.22	0.28
Fucoxanthin		6.75	4.62
Canthaxanthin		0.00	0.97
Myxoxanthophyll	Blue-green algae	0.00	0.98
Zeaxanthin		0.00	1.16
Lutein		4.68	0.57
Viola	Green algae / feed	4.68	0.57
Chlorophyll b		3.28	0.64
Chlorophyll a	Total algae	33.02	15.20
β-carotene	Total algae	1.68	0.60

Conclusion

- ➤ This study demonstrates the detrimental effect of *Vibrio* infections on *L. vannamei* production in intensive biofloc systems and the need for further investigation of *Vibrio* control in these systems
- External stressors such as nursery harvest under unfavorable conditions (e.g., low DO, high temp., high TSS) allow expression of pathogenic *Vibrio*
- ➤ Monitoring *Vibrio* can be a useful tool for predicting disease outbreaks

Acknowledgements

➤ The National Sea Grant, Texas A&M AgriLife Research for funding

> Zeigler Bros. for the feed & funding

- > YSI for the DO monitoring systems
- > Keeton Industries for the nitrifying bacteria

- > Aquatic Eco-Systems for the foam fractionators
- > Colorite Plastics for the air diffusers

- > Firestone Specialty Products for the EPDM liner
- > Florida Organic Aquaculture for funding

